GPU-based fast low-dose cone beam CT reconstruction via total variation.
نویسندگان
چکیده
X-ray imaging dose from serial Cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. The goal of this paper is to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We develop a GPU-friendly version of a forward-backward splitting algorithm to solve this problem. A multi-grid technique is also employed. We test our CBCT reconstruction algorithm on a digital phantom and a head-and-neck patient case. The performance under low mAs is also validated using physical phantoms. It is found that 40 x-ray projections are sufficient to reconstruct CBCT images with satisfactory quality for clinical purposes. Phantom experiments indicate that CBCT images can be successfully reconstructed under 0.1 mAs/projection. Comparing with the widely used head-and-neck scanning protocol of about 360 projections with 0.4 mAs/projection, an overall 36 times dose reduction has been achieved. The reconstruction time is about 130 sec on an NVIDIA Tesla C1060 GPU card, which is estimated ∼ 100 times faster than similar regularized iterative reconstruction approaches.
منابع مشابه
GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
PURPOSE Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersa...
متن کامل3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed t...
متن کاملEM+TV for Reconstruction of Cone-beam CT with Curved Detectors using GPU
Computerized tomography (CT) plays a critical role in the practice of modern medicine. However, the radiation associated with CT is significant. Methods that can enable CT imaging at reduced radiation exposure without sacrificing image quality are therefore extremely important. This paper introduces a novel method for enabling improved reconstruction at lower radiation exposure levels. The meth...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملGPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume
Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of X-ray science and technology
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2011